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Lidar signal de-noising based on discrete wavelet transform
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Lidar is an efficient tool for remote monitoring, but the effective range is often limited by signal-to-noise
ratio (SNR). The reason is that noises or fluctuations always strongly affect the measured results. So the
weak signal detection is a basic and important problem in the lidar systems. Through the power spectral
estimation, we find that digital filters are not suitable for processing lidar signal buried in noise. We present
a new method of the lidar signal acquisition based on discrete wavelet transform for the improvement of
SNR to increase the effective range of lidar measurements. Performance of the method is investigated by
detecting the simulating and real signals in white noise. The results of Butterworth filter, which is a kind
of finite impulse response filter, are also demonstrated for comparison. The experiment results show that
the approach is superior to the traditional methods.

OCIS codes: 280.3640, 060.4510, 010.3640.

Lidar is most widely used in atmospheric research in en-
vironments. Lidar can be used to study the high cir-
rus clouds over equatorial regions[1], high-latitude polar
stratospheric clouds[2], stratospheric ozone[3] and strato-
spheric aerosols[4]. Lidar is the unique detector, which
can provide us remote or selective sensing of about 20
different gaseous compounds in the atmosphere.

Lidar transmits electromagnetic radiation and mea-
sures the radiation that is scattered back to receiver. The
backscattered radiation detected by a lidar can be de-
scribed by the lidar equation. For a simple backscattered
lidar, the lidar equation can be written as
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where pr(λL) is the power returned to the lidar at the
laser wavelength λ1; C is the lidar constant; R is the
range; h = c × tp with tp being the pulse duration and c
the speed of light. The term O(R) describes the overlap
between the laser beam and the receiver field of view
and it is equal to 1 for ranges where there is complete
overlap of the laser and the receiver’s field of view. In
addition, β(λL,R) stands for the combined aerosol and
molecular backscatter coefficient and ke(λL, R) denotes
extinction coefficients at the laser wavelength λ. For an
elastic backscatter (one wavelength) lidar, this combined
backscattering can be obtained by solving the lidar equa-
tion following the method suggested by Ref. [4].

The main limitation of the effective range of lidar sys-
tem is caused by the fact that the signal-to-noise ratio
(SNR) falls rapidly with an increase of the distance R,
which involves all types of lidars[5]. Figure 1 shows a
simulating lidar signal without noise and illustrates the
characteristic of ideal lidar signal. Figure 2 shows a
real lidar signal, which backscattered by molecular and
aerosol, recorded someday by our own lidar system lo-
cated in Anhui Institute of Optics and Fine Machine
(AIOFM), Hefei, China.

In practice, several efficient procedures should be ap-
plied in order to improve the quality of lidar data. The
signal, pr(λL), has to be achieved by averaging several
hundreds or thousands of lasers pulses. This averaging

is necessary to reduce random noise and interferences
as well as to increase the precision of digitalization. By
moving average method[5], the signal is only smoothed
over the distance. So it cannot eliminate nonsensical
values (especially negative values) produced by noise.

One of the most important problems that have to be
solved with the applications of digital filters is the cor-
rect choice of the filter type and the filter parameters.
The most difficult choice is that of the cut-off frequency
of the filter. It is often selected arbitrarily or adopted
a certain theoretical model[6−8]. The wavelet transform
(WT) has recently become a data analysis tool in many
applications like estimation, classification, and compres-
sion. The wavelet expansions tend to concentrate the
signal energy into a relatively small number of large
coefficients. This energy concentrate property of the
WT makes the wavelet domain appropriate for signal
estimation. In this paper, we present a new method,
which based on discrete WT (DWT), to process lidar
signal de-noising and increase the effective range of li-
dar measurements. Smoothing removes high frequency
and retains low ones, de-noising attempts to remove
whatever noise is present and retain whatever signal

Fig. 1. Simulating lidar signal without noise.

Fig. 2. Real lidar signal with noise.
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is present regardless of the signal’s frequency content.
Wavelet de-noising does involve nonlinear soft threshold
in the WT domain, and consists of three steps: a linear
forward transform, a nonlinear threshold de-noising and
a linear inverse WT. Furthermore, wavelet shrinking de-
noising is considered as a nonparametric method. Thus,
it is distinct from parametric method[9] in which we must
estimate parameters for a particular model that must be
assumed a priori.

In a real experiment there are many sources of noises
and interferences, which can affect the lidar signal. 1)
The random interferences and noises are produced mainly
by the lidar system. 2) Interferences produced by high
currents are switched in the laser circuits during the
pulse. Interferences of this type are usually difficult to
reduce by a simple shielding. 3) The background pro-
duced by light also comes from the sources other than
the lidar laser. It can be eliminated in the similar way
to the interferences occurring due to discharges in the
laser circuits. 4) Light statistics is another important in-
dex for the lidar precision. It means that the parameter
in Eq. (1) is determined by the detector characteristic.
5) Finally, there exists a digitalization noise, which is
produced because of the reduced precision of devices
converting the signal from the analogue form to the dig-
ital one.

Figure 3 shows the power spectral density (PSD) of
simulating lidar signal illustrated in Fig. 1 and Fig. 4
shows the PSD of real lidar signal illustrated in Fig. 2,
respectively. The goal of spectral estimation is to de-
scribe the distribution (over frequency) of the power
contained in a signal, based on a finite set of data. Ac-
cording to spectral estimation, the noise of lidar signal
is distributed in wide band and the noise and the signal
are almost distributed in the same band interval. So it is
impossible to eliminate the noise using digital filters by
selecting a cut-off frequency simply.

The WT decomposes a signal into a set of basis func-
tions, called a wavelet basis, which are from a single

Fig. 3. PSD of simulating lidar signal.

Fig. 4. PSD of real lidar signal with noise.

prototype wavelet by dilation and translation. By anal-
ogy with the Fourier transform (FT), WT maps the sig-
nal into another domain, in this case the time-scale (fre-
quency) domain. However, the FT spreads the informa-
tion of small or suddenly changing features over a wide
frequency, while the WT is localized in time, which makes
it more appropriate for applications to transient, non-
periodic signals[10].

Wavelet functions w(t) are defined as the waveforms
that are locally positioned in both time and frequency
domain, and satisfy following admissible condition∫ +∞

−∞
w(t)dt = 0. (2)

Equation (2) means that the wavelets do not have a dc
component. One important property of wavelet basis
function is its location in both time and frequency do-
mains simultaneously.

The more popular orthogonal wavelet bases have sev-
eral interesting properties that make them suitable as
tool in signal analysis. In particular it has been possi-
ble to construct fast and efficient algorithms that enable
WT to be practical tools in signal processing. Continu-
ous wavelet decomposition can be written as

W (s, b) =
1√
s

∫ +∞

−∞
w(s,b)(t)f(t)dt, (3)

where W (s, b) is the WT coefficient;
1√
s

is a normaliza-

tion factor for conservation of energy; s is called scale pa-
rameter, b is translation factor, w(s,b)(t) = w((t − b)/s)
is the wavelet function at a particular scale s, i.e. the
same wavelet function is dilated or contracted according
to the scale; and f(t) is the function to be analyzed. The
scale s can be interpreted as a measure of frequency. A
short scale contains high-frequency components whereas
a long scale contains low-frequency components. Equa-
tion (3) can also be interpreted as a convolution of the sig-
nal with the wavelet function in the time domain. Since
the wavelets are locally positioned and have no DC com-
ponent, the WT has sensitivity to the transient signals.
And it carries out cross correlation procedure between
wavelets and signals in the time domain, and de-noising
procedure in the frequency domain. The WT also has a
linear property

Ws+n(s, b) = Ws(s, b) + Wn(s, b), (4)

where Ws(s, b) is the WT coefficient of the signal with-
out noise, Wn(s, b) is the WT coefficient of noise and
Ws+n(s, b) is the WT coefficient of the signal with noise.

Functionally, WT can be applied to a finite group of
data much like the discrete FT (DFT). The DWT uses
two kinds of basis function consisting of a set of scaling
functions, φ(t), called the “father” wavelet (interpreted
as a low-pass filter), and wavelet functions, w(t), called
the “mother” wavelet (interpreted as a high-pass filter).
A common algorithm for calculating discrete wavelet co-
efficients is the so-called Mallat algorithm[11]. The aim
of the DWT is to decompose any signal f(t) into a sum-
mation of all possible wavelet bases at different scales.
The original input signal, f(t), passes through these two
complementary filters and emerges as two signals.

The wavelet function w(t) can be written as a linear
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combination of the scaling function. The scaling func-
tion has the property that it can be written in terms of
scaled versions itself,

φ
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t

2

)
=

√
2
∑

n

hnφ(t − n), (5)

w
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=

√
2
∑

n

gnφ(t − n). (6)

There are two sequences, hn and gn, of coefficients. hn

are related to the low-pass filtering and gn to the high-
pass filter in the DWT algorithm. At each scale high and
low pass filters are applied to the input signal. The ac-
tual shapes of these filters are determined by the kind
of wavelet function used. The output from the high-
pass filter at each scale is recorded as the wavelet co-
efficients. The low-pass filter extracts the low frequency
components for the next scale where another set of high
and low-pass filters is employed. At each successive scale
the length of the vector upon which the filters operate is
halved; this is referred to as decimation. Thus, the to-
tal number of available scale is log2(N), where N is the
length of the input data vector.

The coefficients of DWT are related not only to the in-
put signal f(t), but also to the types of mother wavelets
w(t) and its scaling function φ(t). When a mother
wavelet, whose features are most matched the signal is
chosen, the DWT coefficients of signal are bigger than
that of noise in each scale. The success of wavelet de-
noising based on threshold lies in that usually the signal
will be decomposed into a few large coefficients whereas
the noise component will give rise to small coefficients
only. It is the features that we can use to remove the
noise in signal.

Through wavelet decomposition, a similarity index
W (s, b) between the signal and the wavelet is calcu-
lated. The index called wavelet coefficient represents how
closely the wavelet w(t) correlates with the original sig-
nal. If the index W (s, b) is large, the similarity is strong;
otherwise, it is weak. As a result, we use the following
formula to reconstruct

f(t) = W (s, b) ⊗ w(t), (7)

where ⊗ denotes inverse DWT.
In this section, we present two experimental results

on the proposed algorithm for signal de-noising. First,
the simulating signal is generated from the function
y = exp(−128 × ((x − 0.3)2) − 3 × (|x − 0.7|0.4)). The
input x is generated from the uniform distribution on [0,
1.024], and the corresponding functional output y is arti-
ficially contaminated by stochastic noises generated from
normal Gaussian white noise with zero-means. Figure 5
shows the contaminated signal with the SNR of 2 dB.
The SNR is here defined as

SNR = 10 log

{
(

n∑
i=1

I2
k)/

[
n∑

i=1

(Ik − Îk)2
]}

(unit : dB),

(8)
where Ik denotes the original signal and Îk is contami-
nated signal. In this experiment, the contaminated sim-
ulating signal is decomposed in 5 scale and the wavelet

function is symlet wavelet with five order. Figure 6 shows
the de-noised simulating signal with the SNR of 25 dB.
For contrast, the original simulating signal was also illus-
trated. It suggested that sharp features of the original
signal remain sharp in the reconstruction. Clearly, the
method of wavelet coefficient de-noising based on DWT
has better performance in terms of visual quality. In fact,
the gain of SNR is more then ten times.

Assume that we are given N samples from real lidar sig-
nal observed with noise: yi = f(t)i + ei, i = 1, 2, · · · , N ,
where ei is regarded as zero mean and variance Gaussian
white noise.

In practice, the Gaussian wavelet or Mexican hat
wavelet is often used as mother wavelet. The Mexican
hat wavelet is compactly supported in the time domain
rather than the frequency domain, and is often used in
the case where high resolution is required in the time do-
main. For lidar signal is a transient signal in the time
domain, Mexican hat wavelet is selected. The Mexican
hat wavelet is given by

w(t) =
2√
3
π−1/4(1 − t2)e−t2/2. (9)

Figure 7 shows the waveform of Mexican hat wavelet.
And a scaling function used in this experiment is
φ(t) = 1, if 0 ≤ t ≤ 1, otherwise φ(t) = 0.

In fact, the lidar signal tends to dominate low-
frequency components. It is expected that the majority
of high-frequency components above a certain level are

Fig. 5. Contaminated signal.

Fig. 6. Reconstructed signal.

Fig. 7. Mexican hat wavelet.
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noise components, which have very small wavelet coeffi-
cient values at short scales. To remove those elements
regarded as noise among the whole wavelet coefficient,
W (s, b), there are many criteria giving threshold value.
In this paper, we use the following universal threshold,
th = σ

√
(2 log2(N)) where N is the length of the in-

put data vector and σ is the standard deviation of the
noise. The latter is estimated from the median of the
detail DWT coefficients at the first level (D1) of signal
decomposition.

σ = |median(D1)|/0.674. (10)

Once the threshold value has been calculated one can
apply a soft or hard modeling policy. For the lidar signal
tends to dominate low-frequency components, the soft
threshold, which is best in reducing noise but worst in
preserving edges, was selected. In soft threshold, for
each DWT coefficient W (s, b) and threshold th, the soft
threshold value is calculated as W st

ij = sgn(|Wij | − th), if
|Wij | ≥ th; W st

ij = 0, if |Wij | ≤ th. Wij is the jth DWT
coefficient at scale i of the decomposition. The threshold
was applied only to detail coefficients.

The procedure of de-noising with soft thresholding is
summarized as follows. 1) Remove meaningless data in-
tervals in the original lidar signal, which are undetectable
ranges of the lidar instrument. And the whole length of
saved signal data set is extended to 2n, by linear padding,
which is the nearest length to the original signal data set.
Apply DWT using Mexican hat wavelet based on Mallat
algorithm to the original signal and obtain the matrix
of wavelet coefficients. 2) Remove the elements regarded
as noise among wavelet coefficients. A soft threshold ap-
proach is used to define the threshold value. The wavelet
coefficient columns larger than the threshold value are
selected and these columns indexes are saved, except for
column indexes involved in the linear padding section.
The selected indexes generate a new compressed lidar
signal data set in the wavelet domain. The indexes are
also used to reconstruct the original signal. 3) Apply
inverse DWT using the saved indexes of selected wavelet
coefficients to obtain de-noised and compressed lidar sig-
nal.

Figure 8 shows the de-noised lidar signal processed by
DWT described in this paper. The effective range is
great than 80 km. Figure 9(a) shows the PSD of lidar
signal processed by DWT. Compared with the PSD of
simulating lidar signal illustrated in Fig. 3, most compo-
nents of the real lidar signal is retained regardless of the
frequency content. Figure 9(b) shows the PSD of lidar
signal processed by Butterworth filter. Obviously, the
high components of lidar signal were lost.

Fig. 8. De-noised lidar signal processed by DWT.

Fig. 9. PSD of lidar signal processed by (a) DWT and (b)
Butterworth filter.

According to power spectral estimation, the noise is
distributed in wide band, especially the noise and the
signal, which came from long distance (greater then 40
km) with low SNR, are almost distributed in the same
band interval. So it is impossible to eliminate the noise
using conventional digital filter by selected a cut-off fre-
quency simply. The wavelet coefficient de-noising algo-
rithm by using nonlinear soft threshold method can re-
move the noise and retain the signal components regard-
less of the signal’s frequency content. The reconstructing
lidar signal algorithm from noise environment based on
DWT is present in this paper. The experimental results
about both simulating and real data demonstrate the ef-
fectiveness and efficiency of our proposed approach. In
particular, the experimental results on real-world lidar
signal show that the proposed approach is still efficient
at greater distance (in the example above 80 km) where
a poor SNR occurs. The reconstruction process of lidar
signal by the wavelet coefficient de-noising shows that the
noise in lidar signal almost was entirely suppressed and
the effective range of lidar instrument increased greatly.
Compared with the conversional digital filters, the PSD
of processed lidar signal suggested that most of the lidar
signal components are retained regardless of the signal
frequency content. Future research work will include how
to apply this method to solving more real problems.

Y. Huang is the author to whom the correspon-
dence should be addressed, his e-mail address is
leafh@hfcas.ac.cn.
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